Just a quick, useless recap

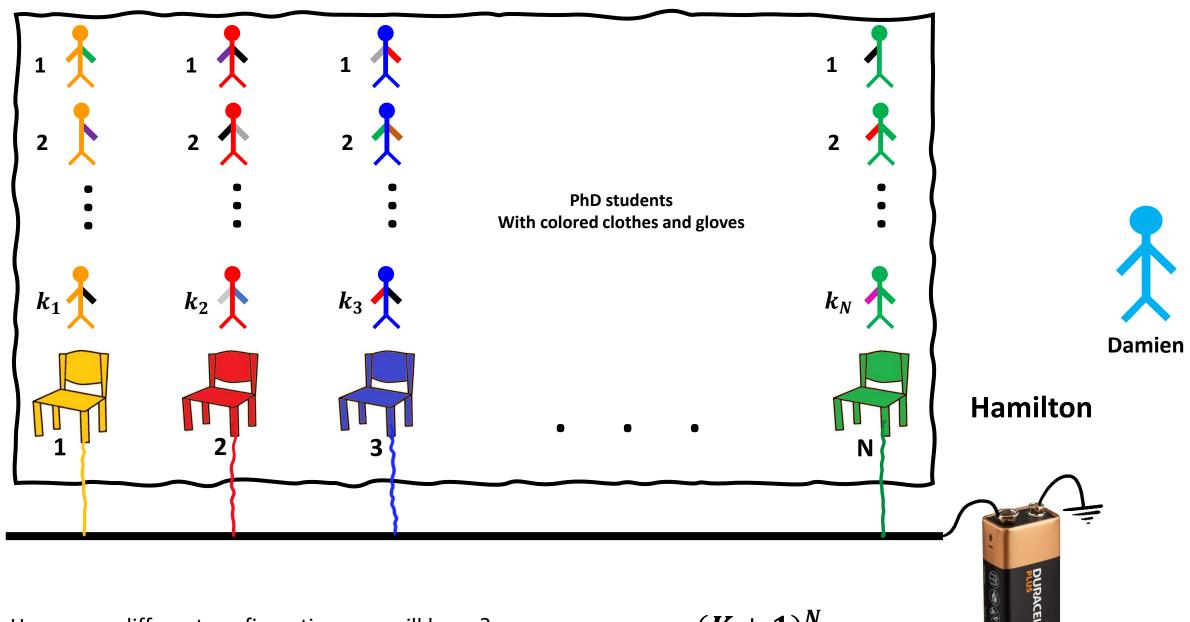
What happened last semester!

The Curse of Hamilton's Chairs

Ahmed Shalaby 2nd year PhD

Supervisor: Damien Woods

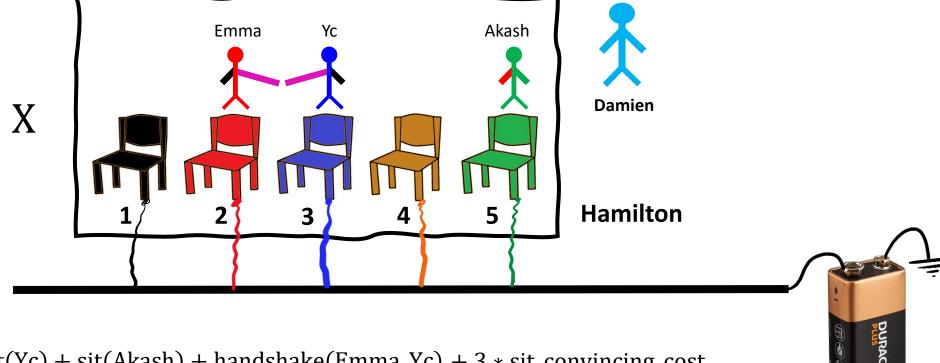
Let's discover the rules of the game



• How many different configurations we will have?

$$(K+1)^N$$

(Exponential in the # of chairs)



$$E(X) = sit(Emma) + sit(Yc) + sit(Akash) + handshake(Emma, Yc) + 3 * sit_convincing_cost.$$

+

+

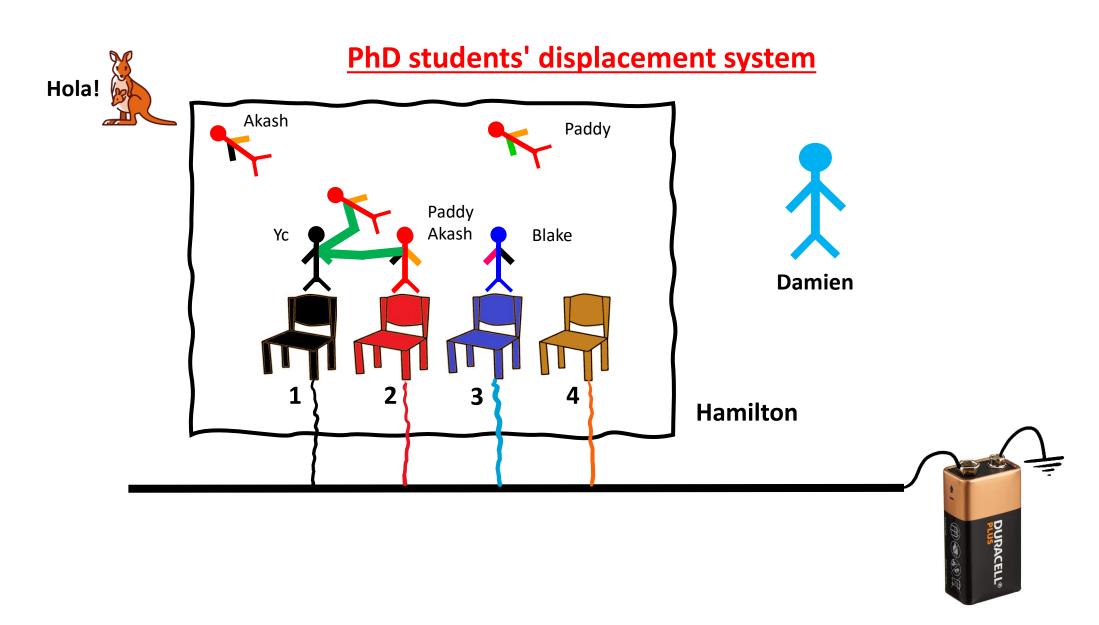
$$E(X) = \sum_{p \in X} \operatorname{sit}(p) + \sum_{p_i, p_{i+1} \in X} \operatorname{handshake}(p_i, p_{i+1}) + l * \operatorname{sit_convincing_cost.}$$

configuration X of size l PhD students

We further assume the following:

• $|sit(p)| > |sit_convincing_cost|$. (Damien always gains by convincing a PhD student to sit)

Built-in self improvement mechanism



When you don't set your boundaries

The Curse of Hamilton's Sofa

How I discovered that my supervisor is actually a

An efficient minimum free energy algorithm for interacting nucleic acid strands

Ahmed Shalaby 2nd year PhD

Supervisor: Damien Woods

Let's discover the rules of the game

In a perfect world

Abstract Algebra

Graph theory

Ahmed's goal

Modelling

- What is his mindset?
- What he prefers?,

Computation

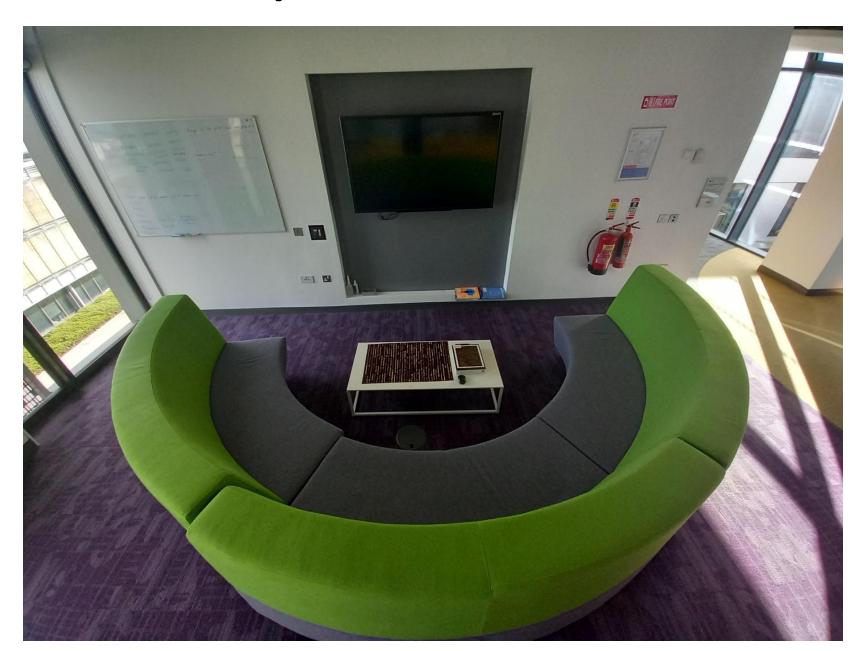
PI

?

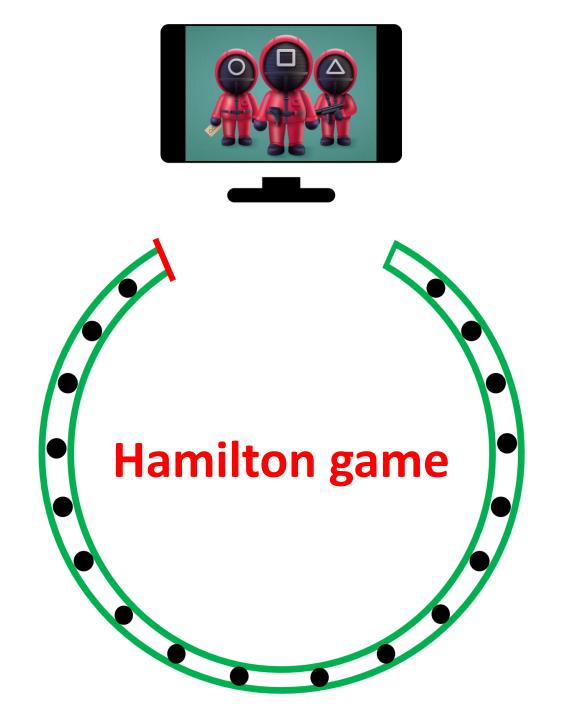
1

7

Once Upon a Time in Hamilton



Email From Rosemary Kate



Level 1

Hamilton game

First year

Daniel Augustina

•

Second year

Ahmed Andre Paddy Cormac

Third year

Dara Solmaz Oluwayomi

fourth year

Akash Yc Emma Darshana

Don't trust our new lab

Akash Akash Akash

Akash

.

Dara

Dara Dara Dara . Darshana Darshana

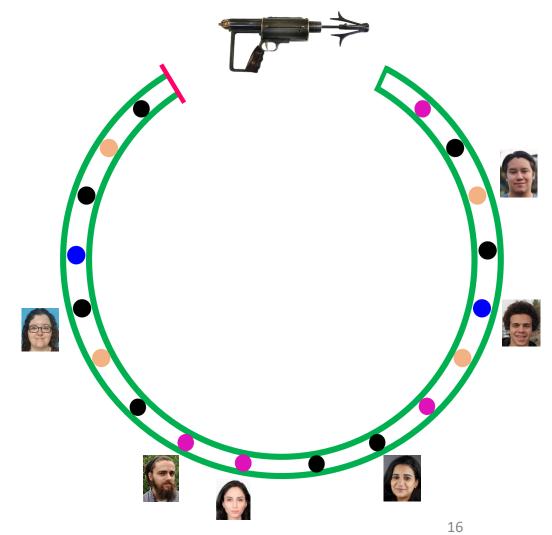
Darshana

Darshana

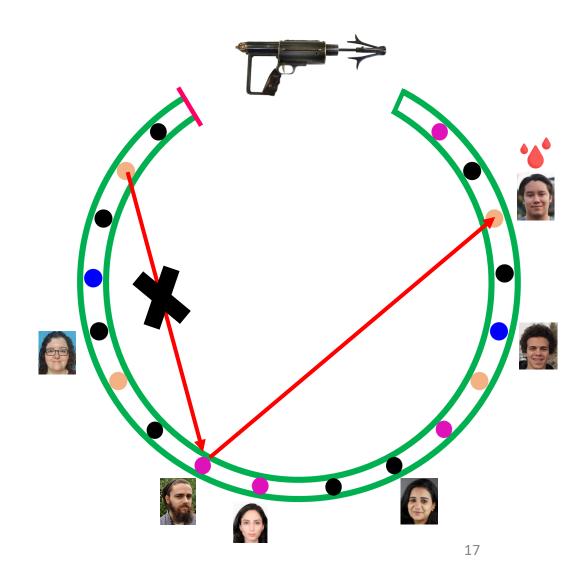
Fergal Fergal Fergal Fergal .

• • •

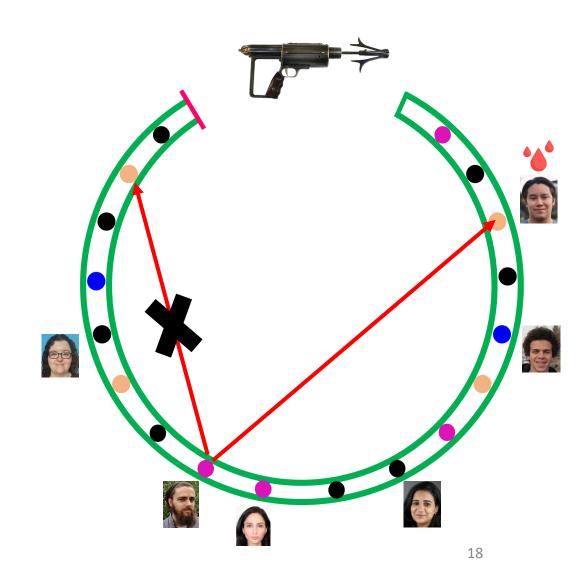
Ahmed



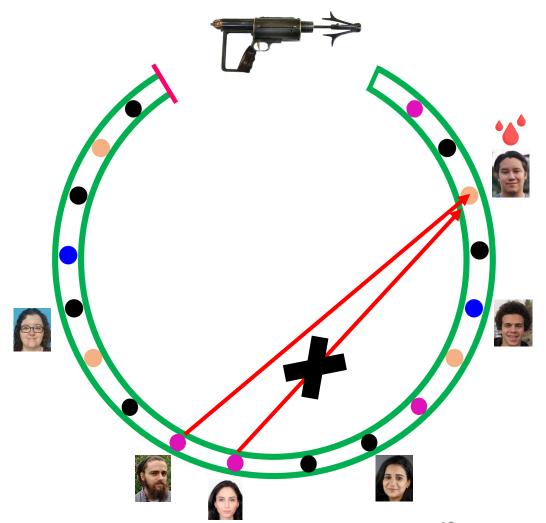
• If you kill, you are safe



- If you kill, you are safe
- You can only kill one student, you have only one bullet

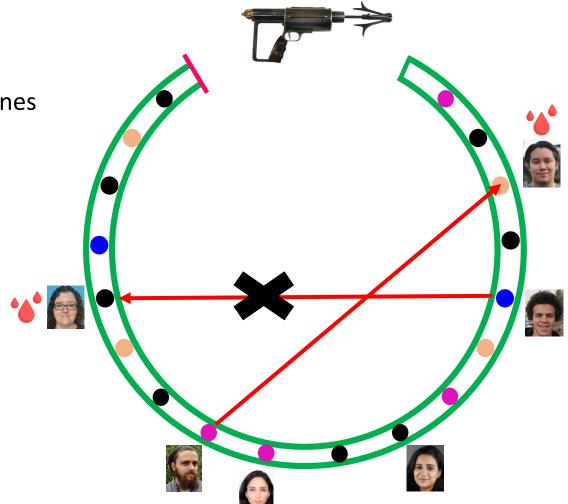


- If you kill, you are safe
- You can only kill one student, you have only one bullet
- You can be killed once

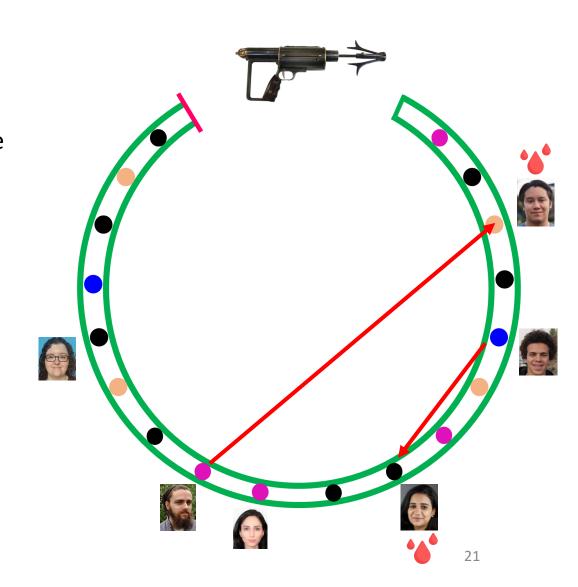


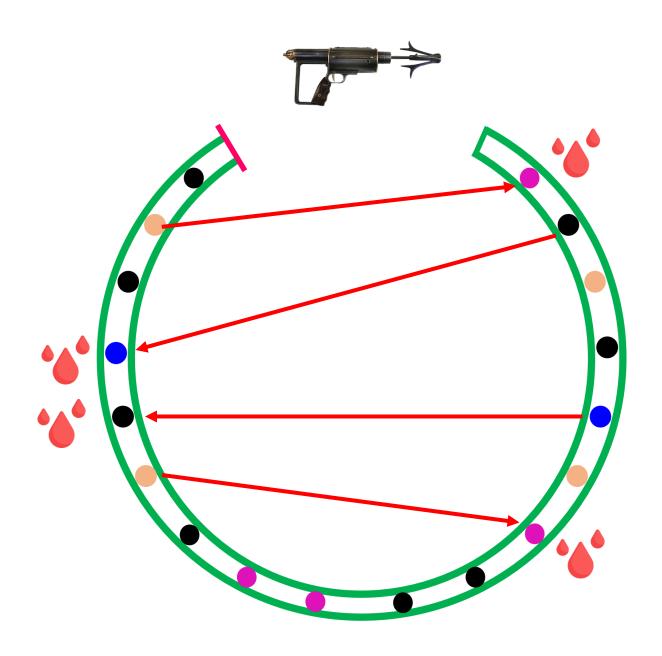
- If you kill, you are safe
- You can only kill one student, you have only one bullet
- You can be killed once

• You must respect other killers, you can't cross their killing lines



- If you kill, you are safe
- You can only kill one student, you have only one bullet
- You can be killed once
- You must respect other killers, you can cross their killing line
- Ahmed can only kill, he's an immortal man

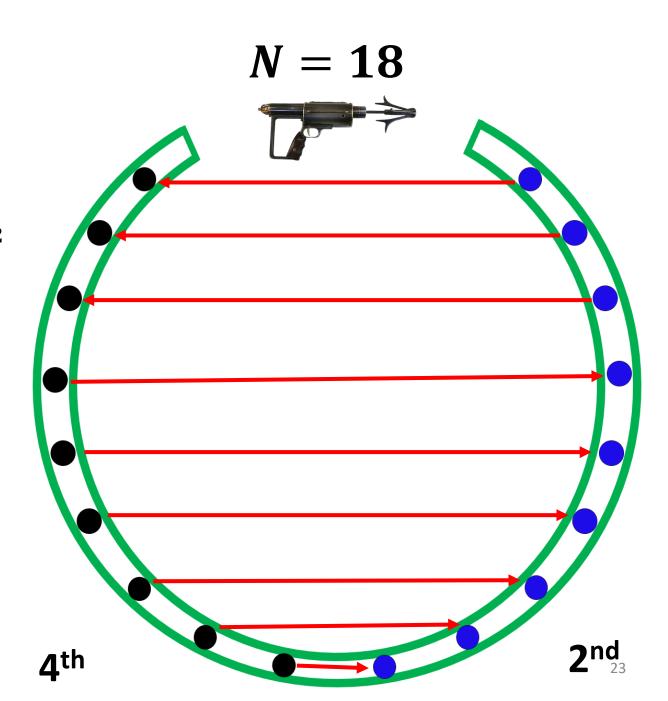




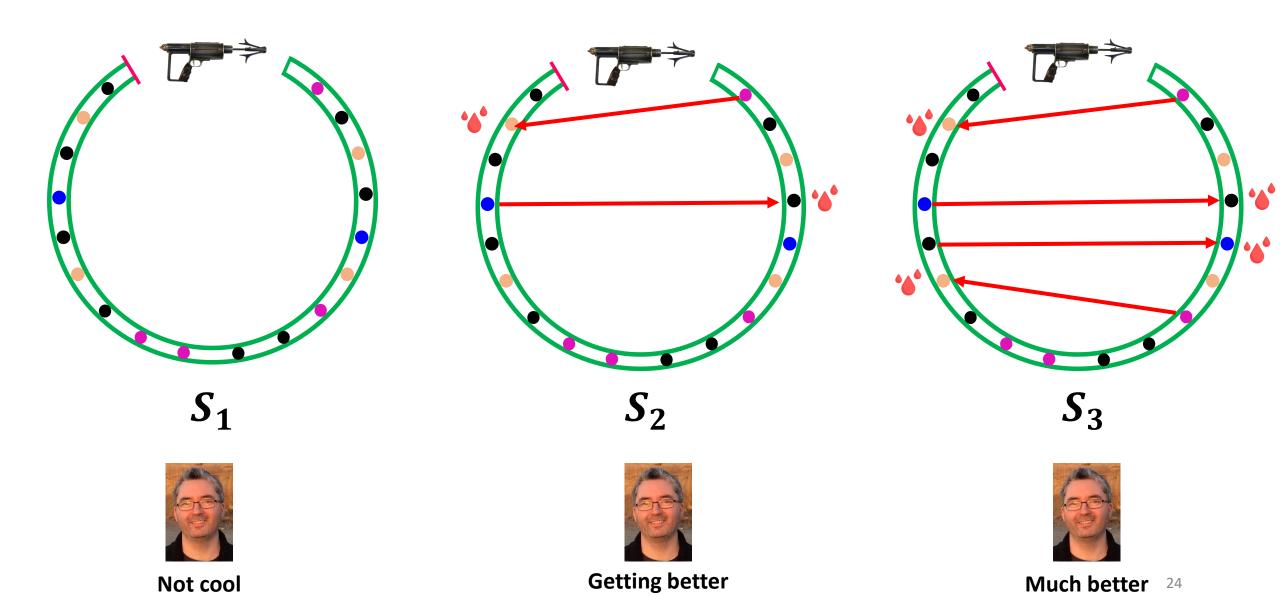
Structure *S*

$$# = {9 \choose 0} + {9 \choose 1} + ... + {9 \choose 9} = 2^9 = 2^{N/2}$$

 Ω : the set of all possible structures that respect the game rules



Possible scenarios



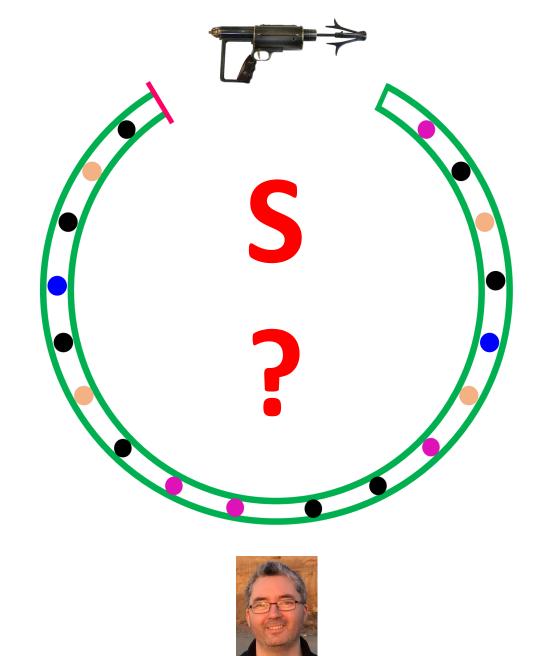
Ahmed's goal


```
PI
Loves more blood
```

?

?

Ş



That is so cool!

Some Criteria/Model

$$B(S) = \# killed PhDs$$

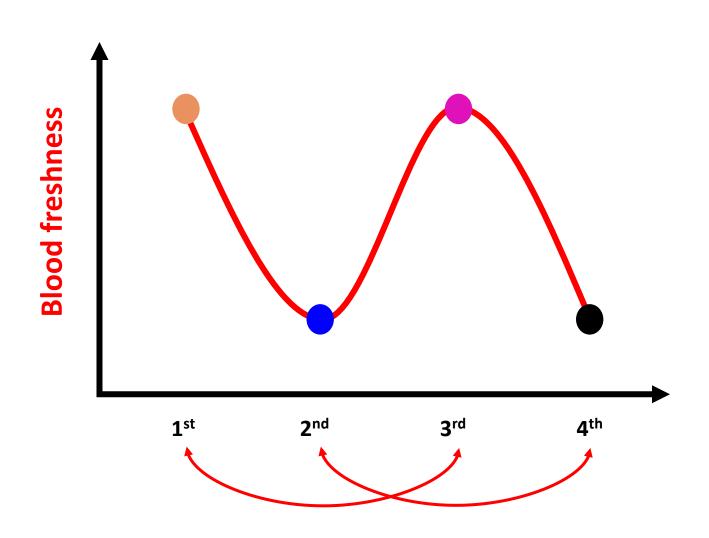
 $\max_{S \in \Omega} B(S)$

 Ω is the set of all possible structures that respect the game rules

How to compute this fast?

Level 2

After playing that game over and over



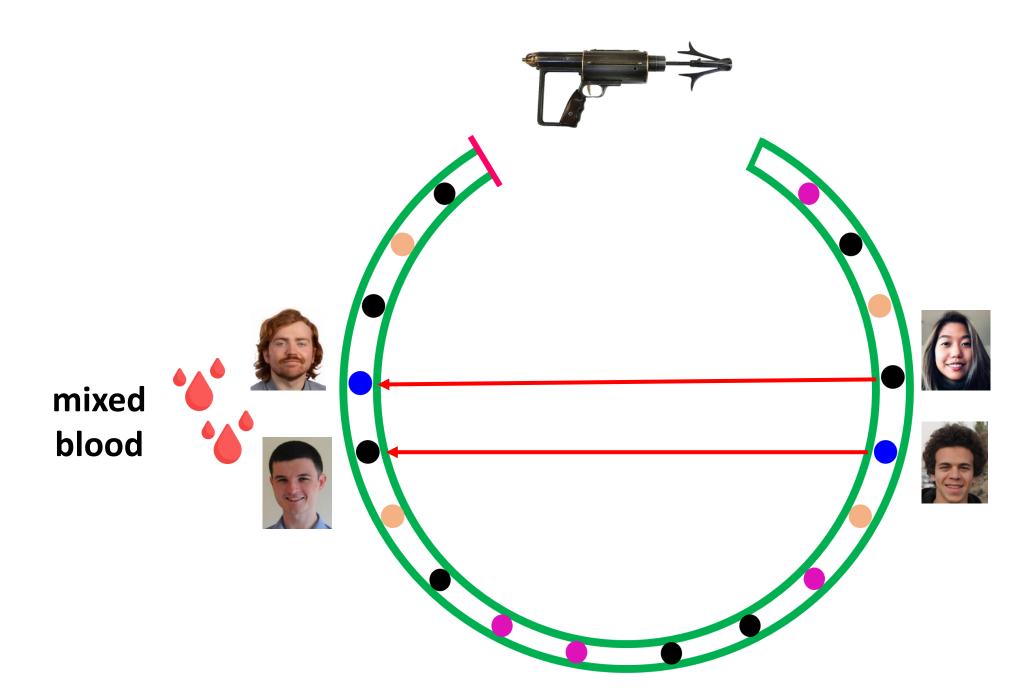
Ahmed's goal


```
PI
Loves high quality blood
```

?

?

3



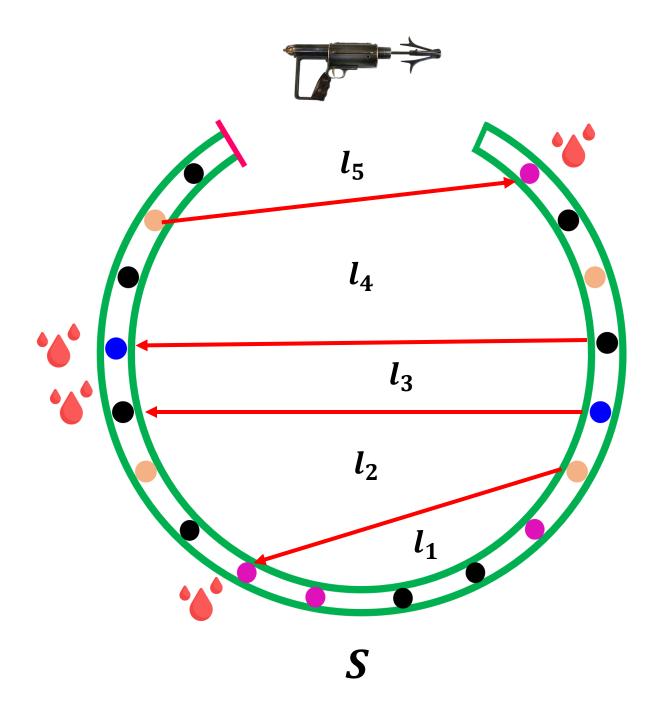
Ahmed's goal

Loves high quality blood

Loves mixed blood

?

?



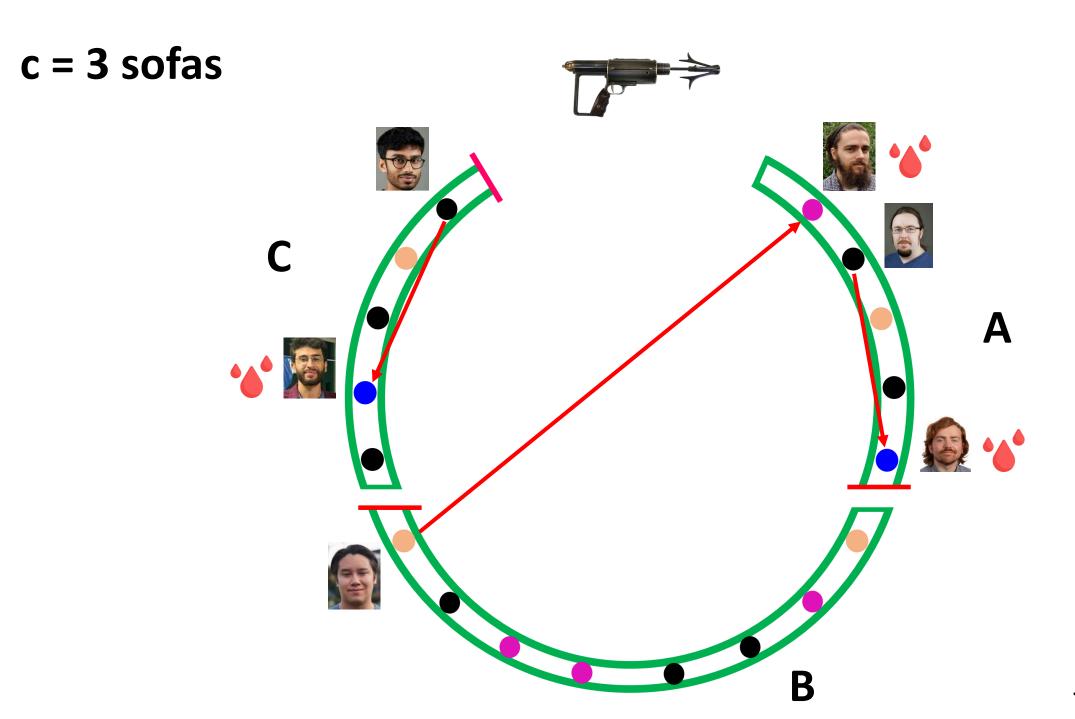
Some Criteria/Model ?

$$B(S) = \sum_{l} B(l)$$

 $\max_{S \in \Omega} B(S)$

How to compute this fast?

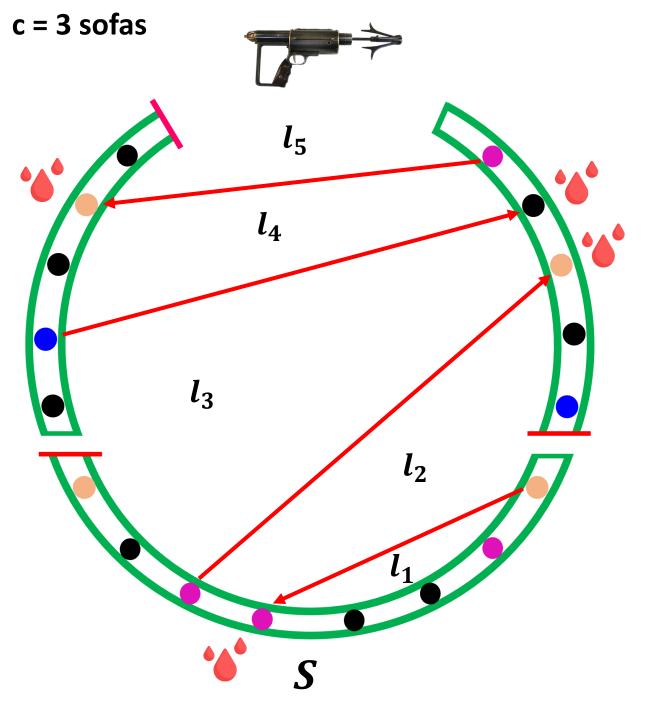
Level 3



That is so bad!

Ahmed's goal

PI
Loves high quality blood
Loves mixed blood
Hates disconnectedness
?



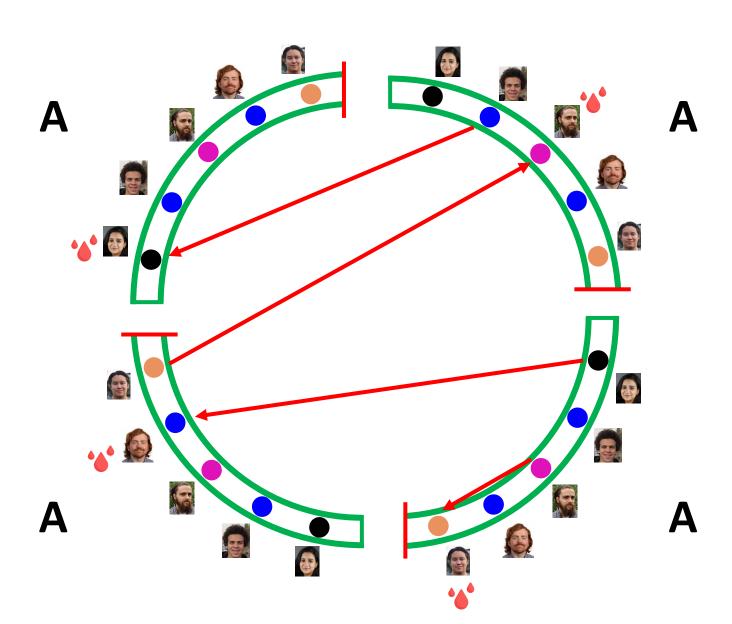
$$B(S) = \sum_{l} B(l) - (c - 1) B^{\text{assoc}}$$

 $\max_{S \in \Omega} B(S)$

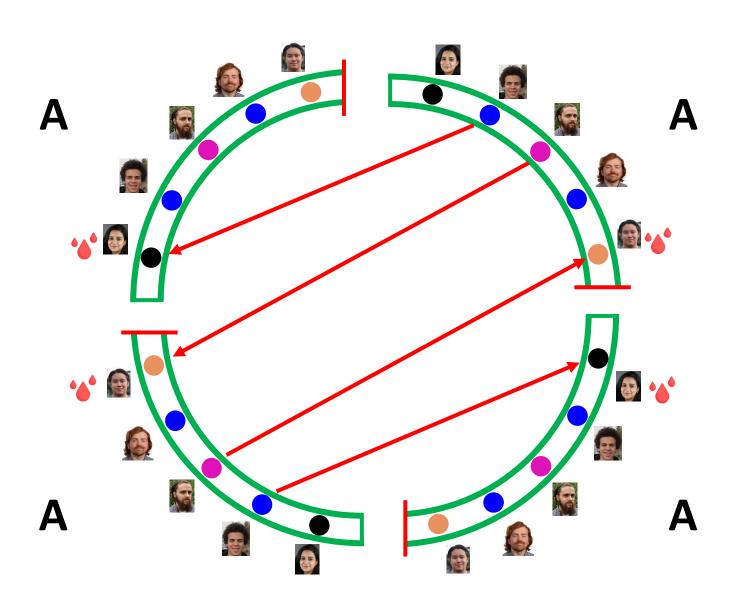
 Ω : the set of all <u>connected</u> structures that respect the game rules

How to compute this fast?

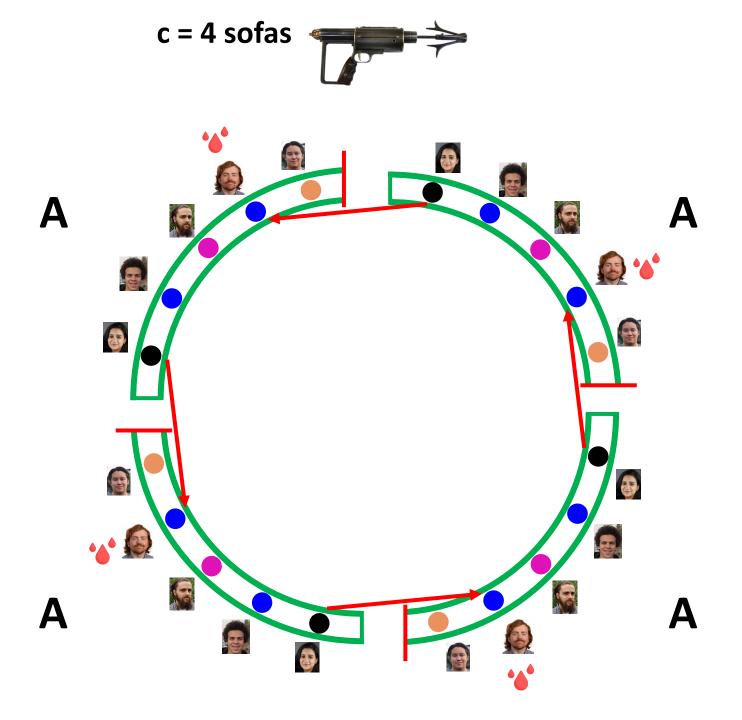
Level 4



That is ok!

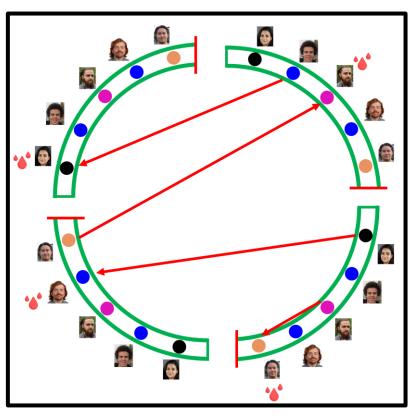


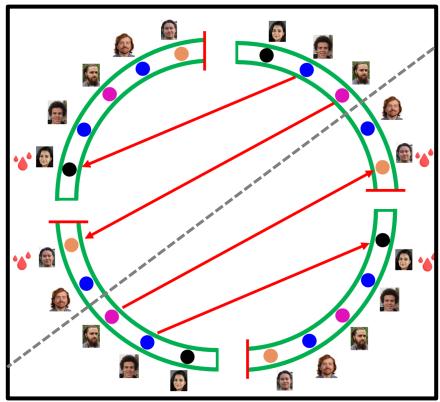
That is ugh!

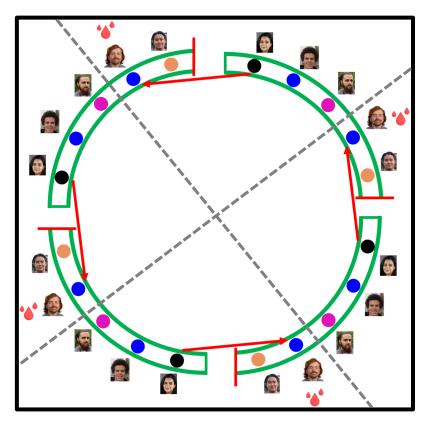


That is ugh ugh!

Let's analyse this







R = 1

Doesn't penalize

Rotate by 180 degrees

$$R=2$$

Penalize a little bit

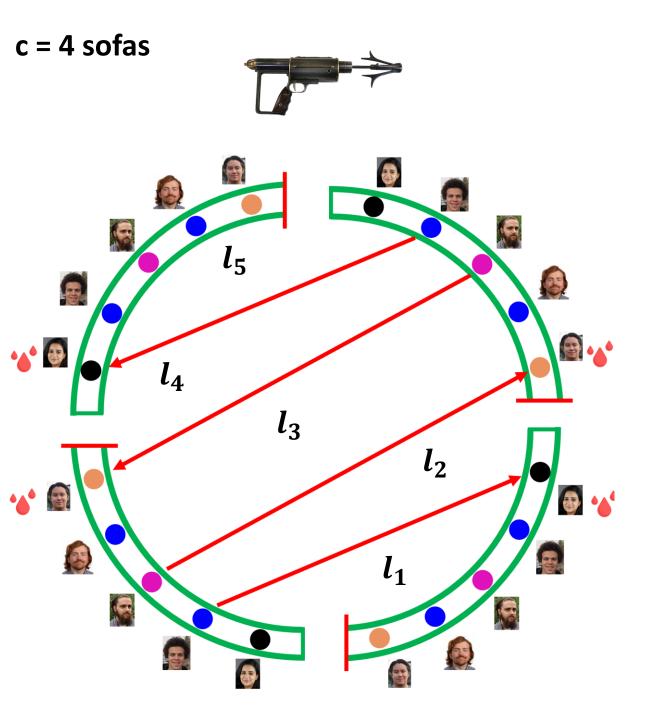
Rotate by 90 degrees

$$R=4$$

Penalize more

Ahmed's goal

PI
Loves high quality blood
Loves mixed blood
Hates disconnectedness
Hates rotational symmetry



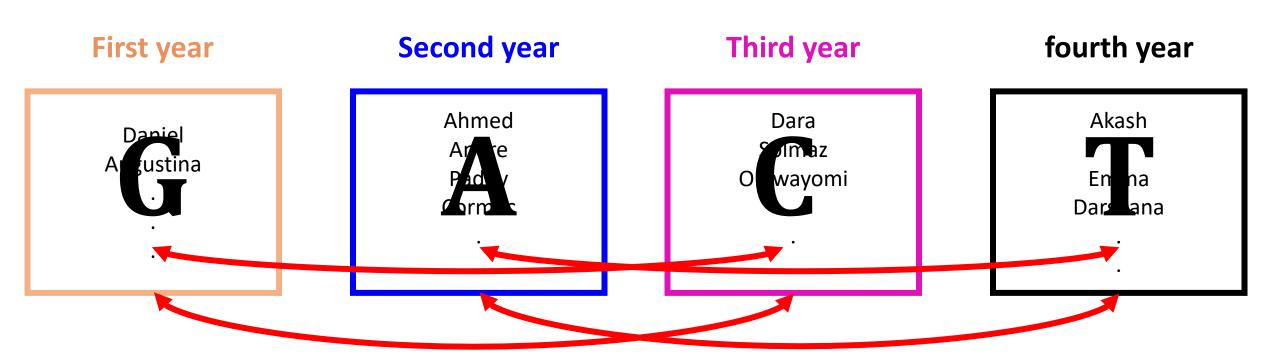
$$B(S) = \sum_{l} B(l) - (c-1)B^{\text{assoc}} - k_B T * \log R$$

 $\max_{S\in\Omega}B(S)$

How to compute this fast?

We are donWhy, Hametton game

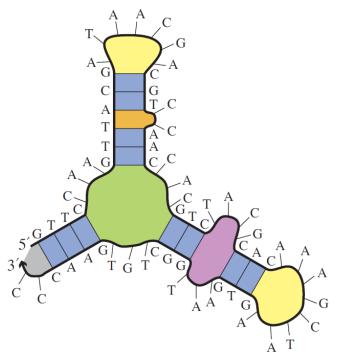
DNA seconidary getmuetures



DNA secondary structure

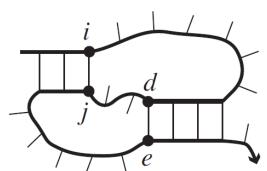
Single stranded DNA

NP - Hard

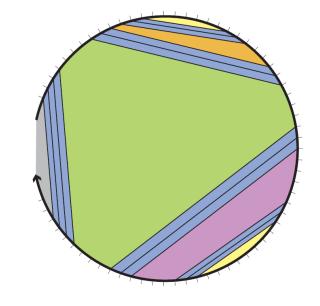


Secondary structure

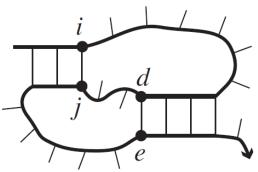
A list of base pairs



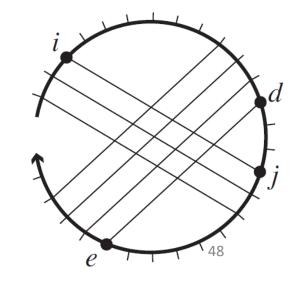
pseudoknot-free



Polymer graph representation

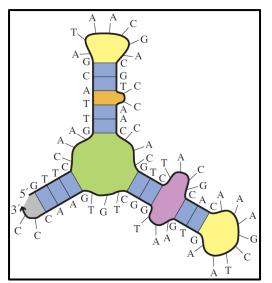


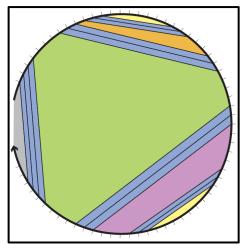
pseudoknotted



Energy models and Minimum Free Energy

Single stranded system



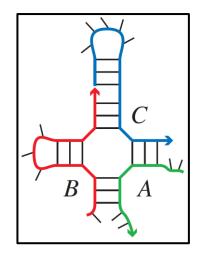


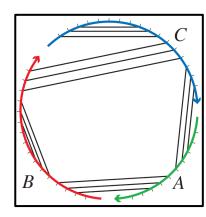
 $\Delta G(S)$

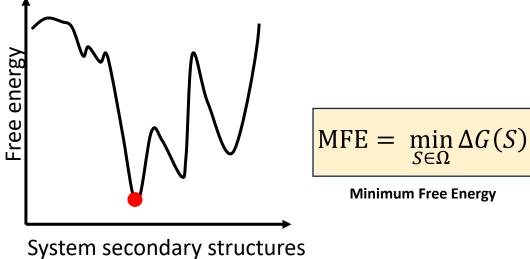
Energy model

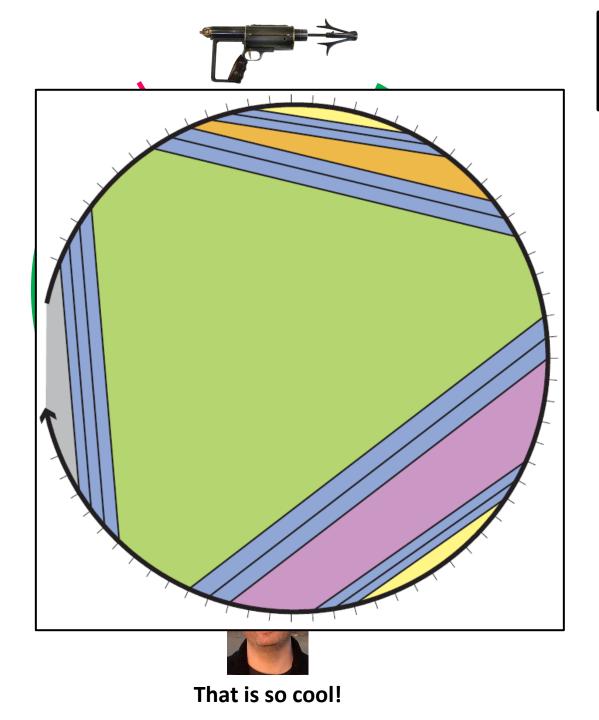
Capture the free energy of secondary structure

Multi stranded system of *s* strands







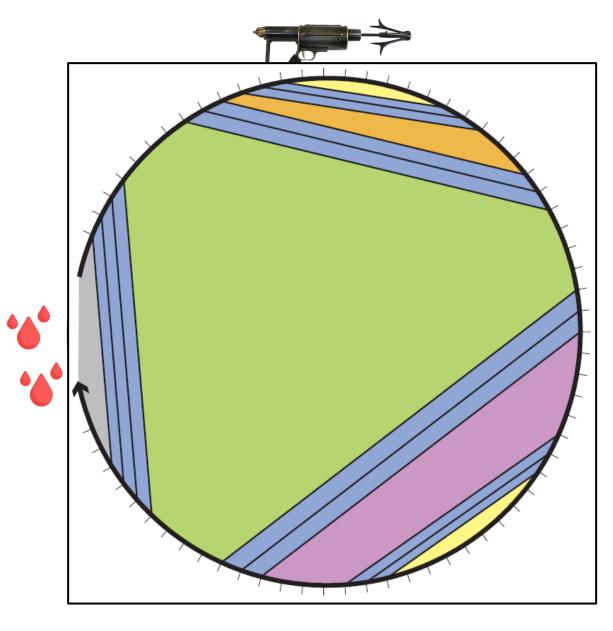


$$\Delta G(S) = -\text{\#base pairs}$$

 $\min_{S \in \Omega} \Delta G(S)$

 Ω is the set of all possible structures that respect the game rules

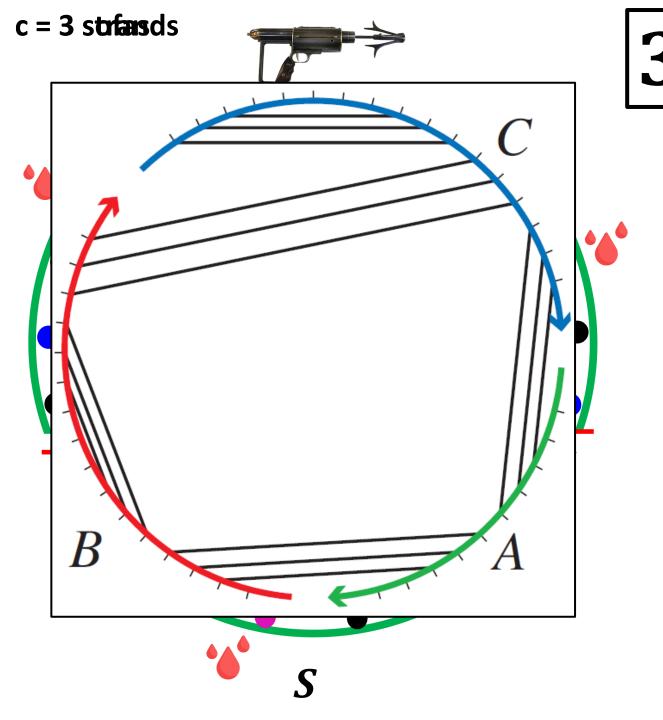
How to compute this fast? Yes



$$\Delta G(S) = \sum_{l} \Delta G(l)$$

 $\min_{S \in \Omega} \Delta G(S)$

How to compute this fast? Yes

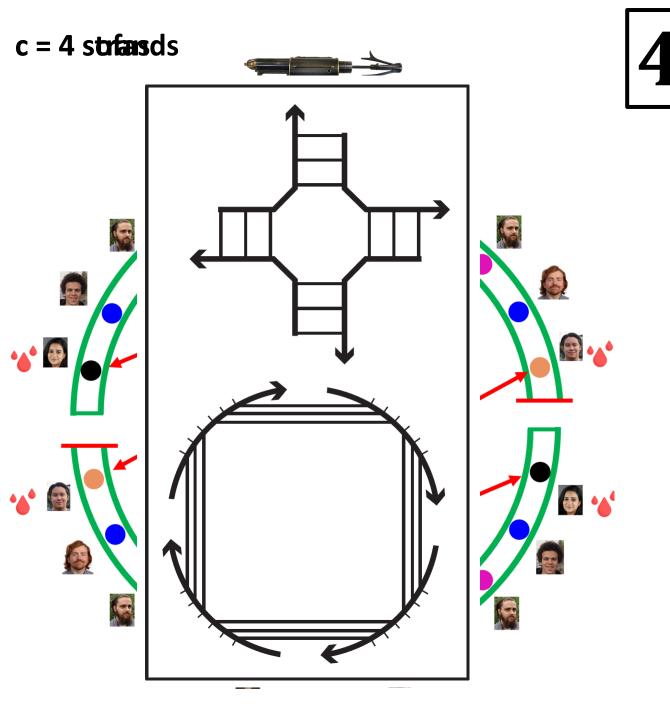


$$\Delta G(S) = \sum_{l} \Delta G(l) + (c - 1) \Delta G^{\text{assoc}}$$

 $\min_{S \in \Omega} \Delta G(S)$

 Ω : the set of all <u>connected</u> structures that respect the game rules

How to compute this fast? 52 Yes



$$\Delta G(S) = \sum_{l} \Delta G(l) + (c - 1)\Delta G^{assoc} + k_B T * \log R$$

 $\min_{S \in \Omega} \Delta G(S)$

How to compute this fast?

No, till now

53

$$\Delta G(S) = \sum_{l \in S} \Delta G(l) + (c-1) * \Delta G^{\text{assoc}} + k_B T * log R + k_B T * log R$$

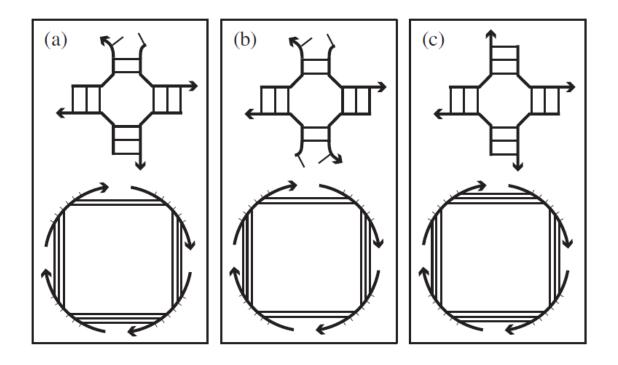


Fig. 2.2 Sample secondary structures and polymer graphs for a complex of four indistinguishable strands. (a) 1-fold (i.e., no) rotational symmetry. (b) 2-fold rotational symmetry. (c) 4-fold rotational symmetry.

Computational complexity of Minimum Free Energy algorithms

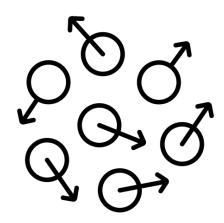
Level	Input Type	MFE
1	Single Strand (Maximum matching)	$O(N^3)$
2	Single Strand (Loop model)	$O(N^3)$
3	Multiple unique Strands, Bounded ($\leq c$)	$O(N^3(c-1)!)$
4	Multiple Strands, Bounded ($\leq c$)	?

N bases, c strands

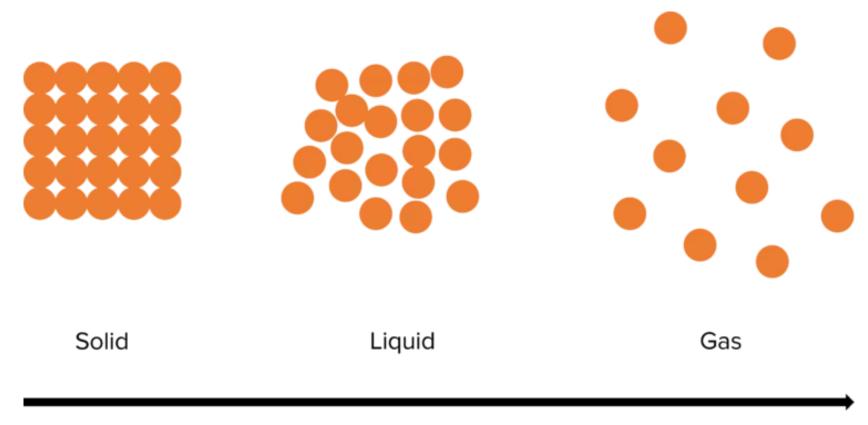
Open problem for $\approx 20 \ \text{years}$

Why symmetry makes that difference?

Entropy

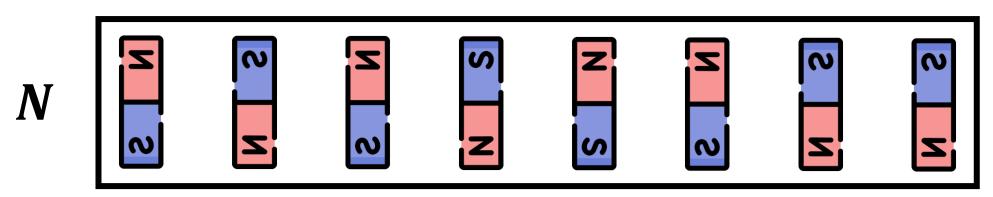


ΔG Free energy **Enthalpy Entropy**

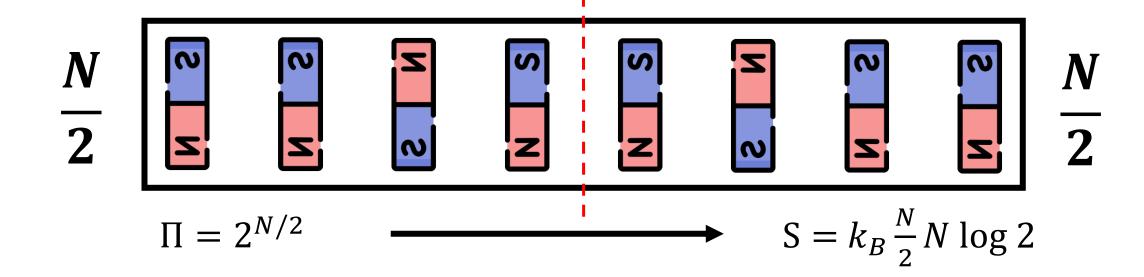


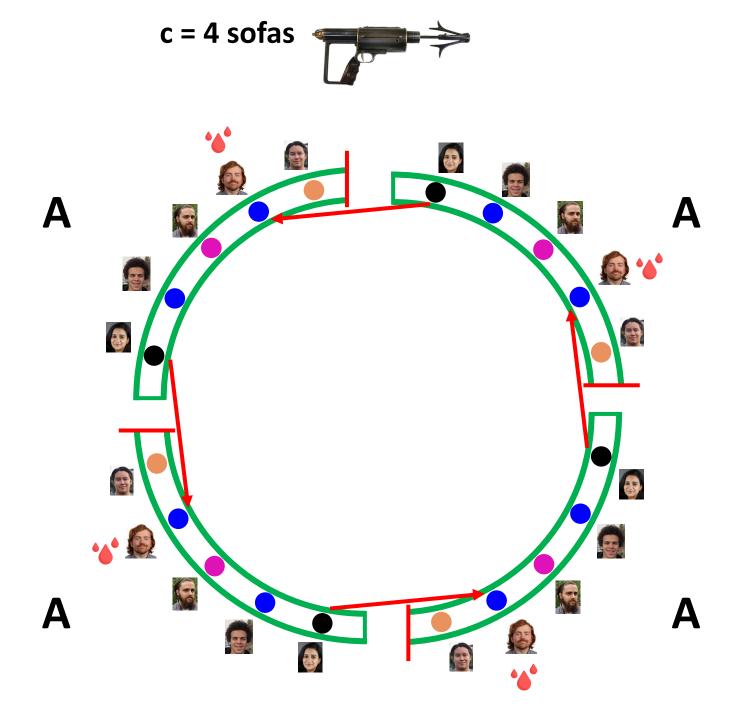
Increasing Entropy

$$S = k_B \log \Pi$$



The total number of states of the N magnets is $\Pi = 2^N$ $S = k_B N \log 2$





That is ugh ugh!

$$\Delta G(S) = \sum_{l \in S} \Delta G(l) + (c - 1) * \Delta G^{\text{assoc}} + k_B T * log R$$

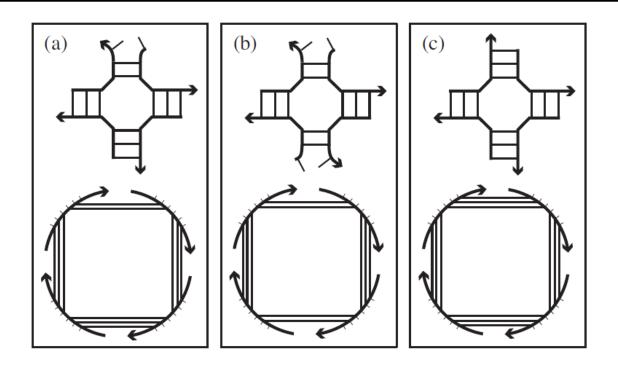


Fig. 2.2 Sample secondary structures and polymer graphs for a complex of four indistinguishable strands. (a) 1-fold (i.e., no) rotational symmetry. (b) 2-fold rotational symmetry. (c) 4-fold rotational symmetry.

Why is this difficult?

Computational complexity of Minimum Free Energy algorithms

Level	Input Type	MFE
1	Single Strand (Maximum matching)	$O(N^3)$
2	Single Strand (Loop model)	$O(N^3)$
3	Multiple unique Strands, Bounded ($\leq c$)	$O(N^3(c-1)!)$
4	Multiple Strands, Bounded (≤ c)	?

N bases, c strands

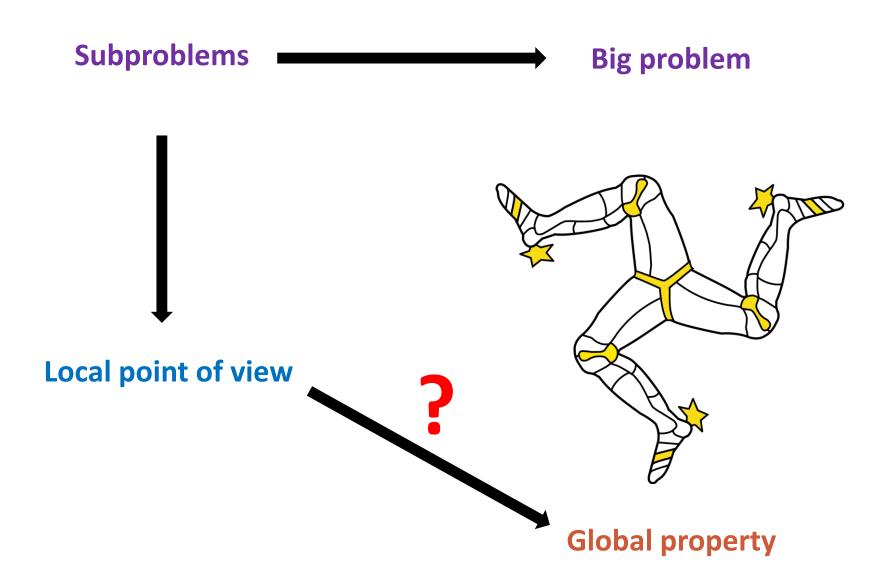
All of these are dynamic programming algorithms

Subproblems Big problem

Level	Input Type	MFE
1	Single Strand (Maximum matching)	O(N3)
2	Single Strand (Loop model)	$O(N^3)$
3	Multiple unique Strands, Bounded ($\leq c$)	$O(N^3(c-1)!)$
4	$\text{Multiple Strands, Bounded } (\leq c)$?

All of these are dynamic programming algorithms

N bases, c strands



Computational complexity of Minimum Free Energy algorithms

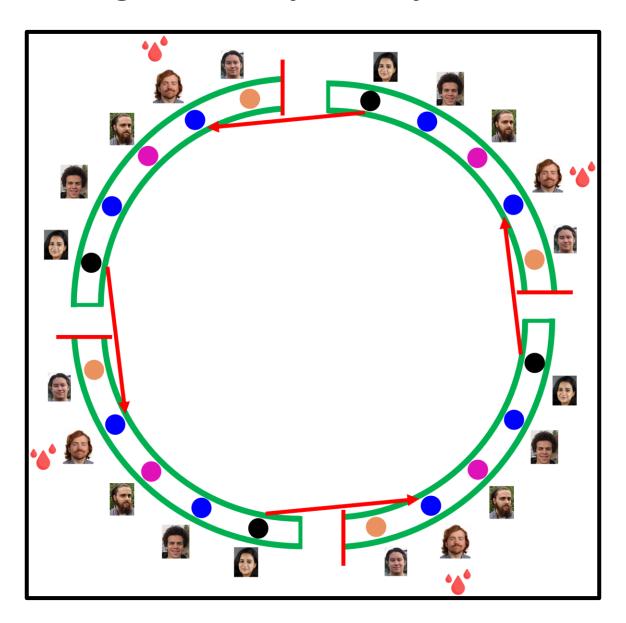
Level	Input Type	MFE
1	Single Strand (Maximum matching)	$O(N^3)$
2	Single Strand (Loop model)	$O(N^3)$
3	Multiple unique Strands, Bounded ($\leq c$)	$O(N^3(c-1)!)$
4	Multiple Strands, Bounded ($\leq c$)	?

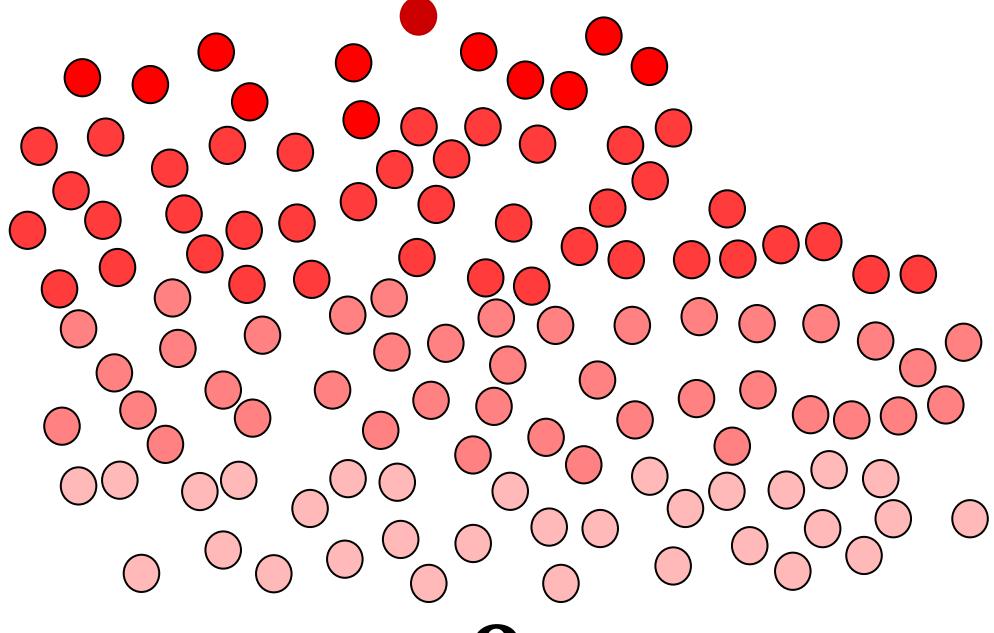
N bases, c strands

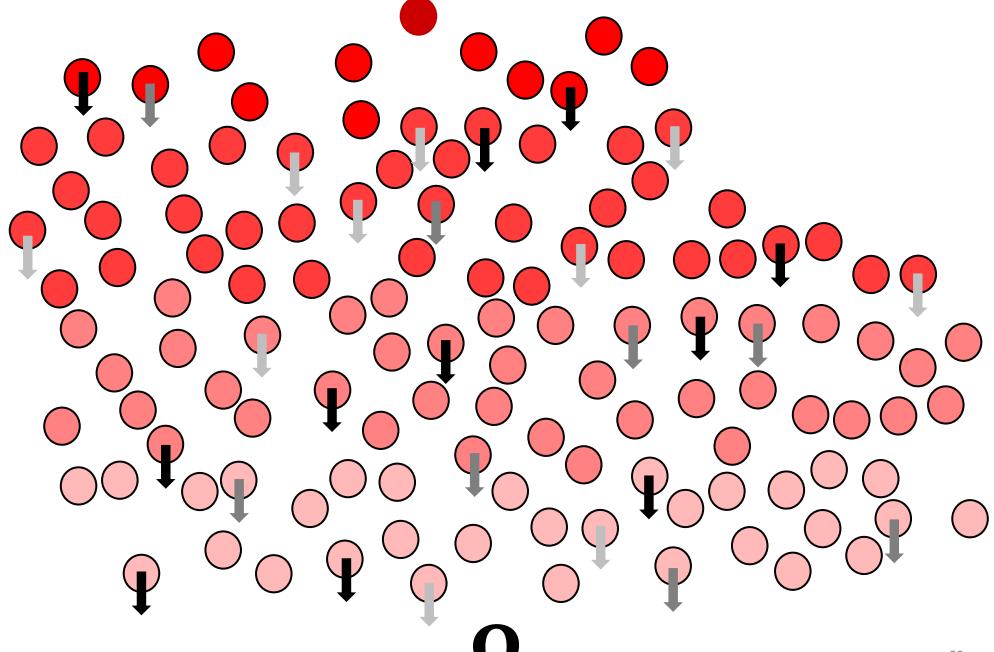
$$B(S) = \sum_{l} B(l) - (c - 1) B^{\text{assoc}}$$

$$B(S) = \sum_{l} B(l) - (c - 1)B^{\text{assoc}} - \mathbf{k_B T} * \mathbf{log R}$$

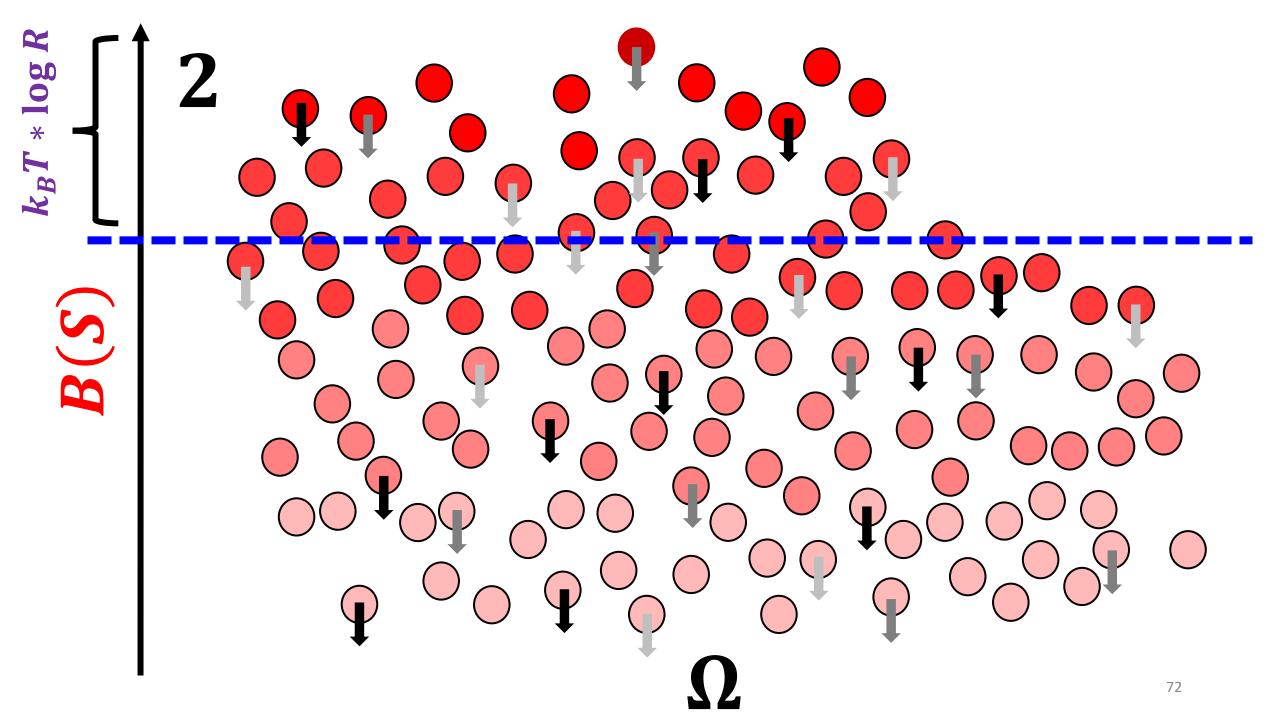
Let's ignore the symmetry for a while

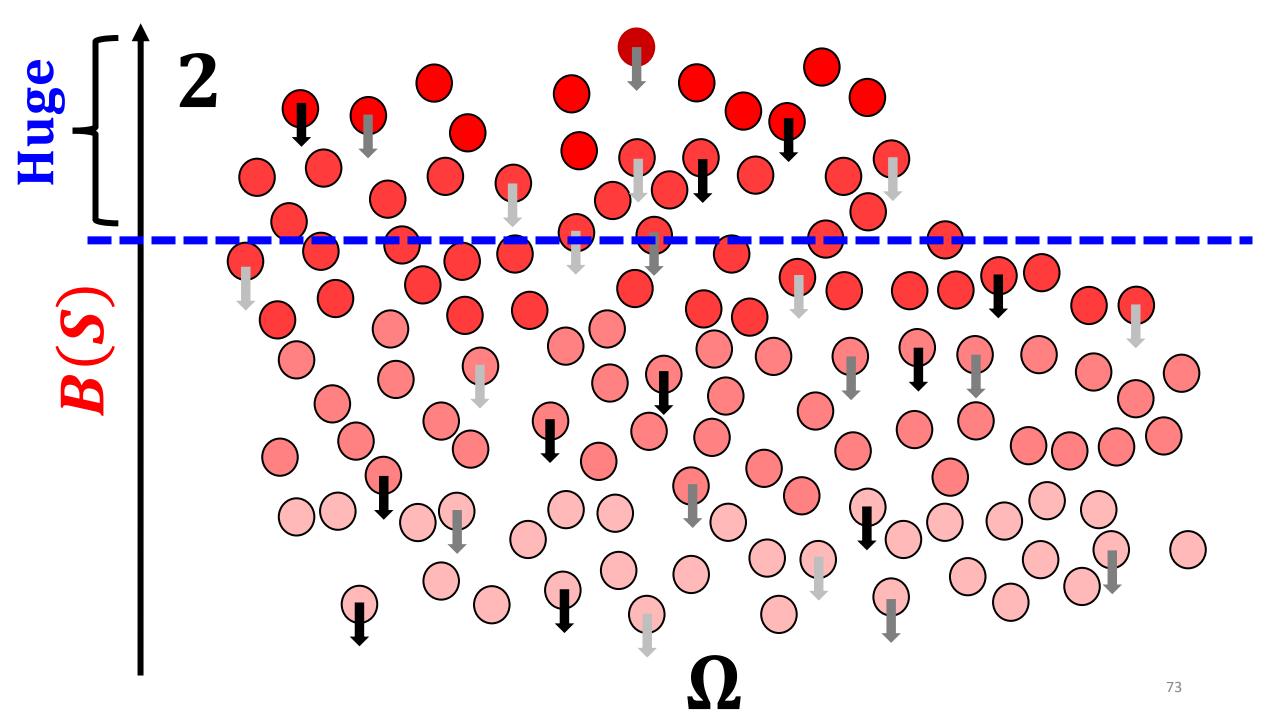






B(S)





Is there any hope?

TAKE A BREAK

Yasso

Last summer, we went to Japan

Ahmed Shalaby

□

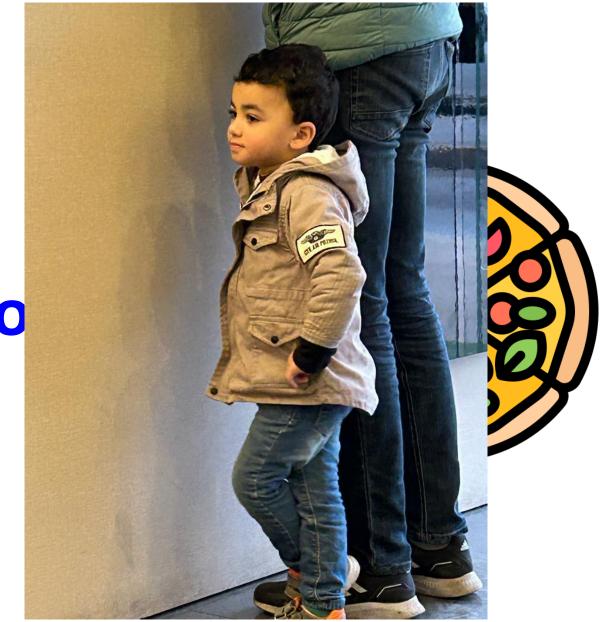
□

Hamilton Institute, Department of Computer Science, Maynooth University, Ireland

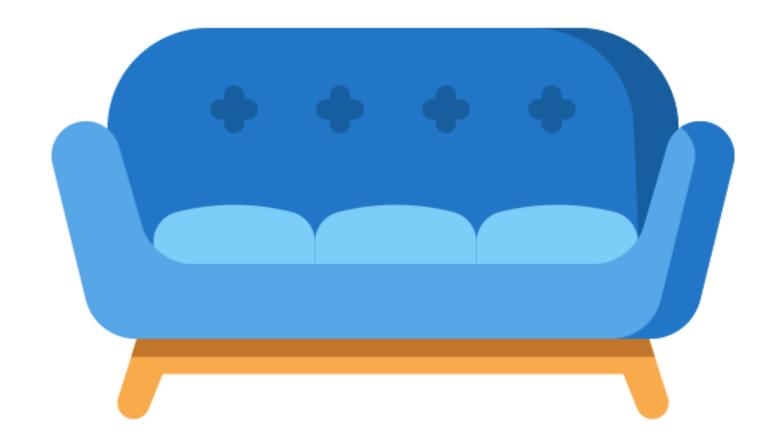
Chris Thachuk ⊠ •

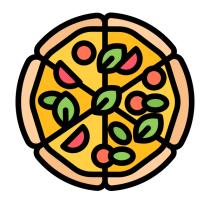
Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA

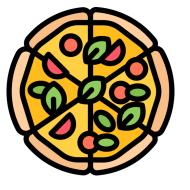
Hamilton Institute, Department of Computer Science, Maynooth University, Ireland

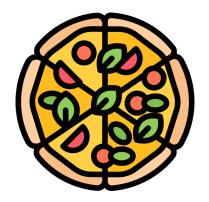


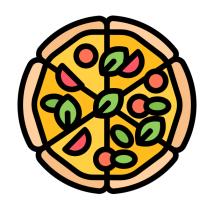
Yasso

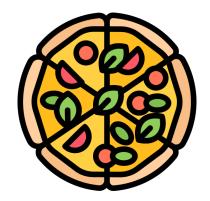


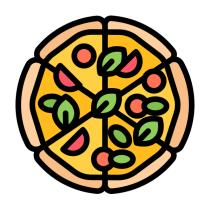


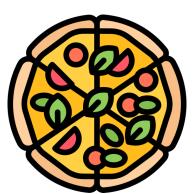


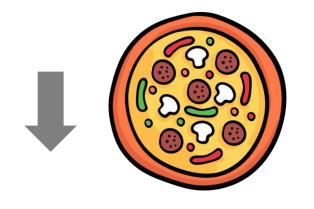












 S_x Symmetric

 $B(S_y)$

 S_z Asymmetric

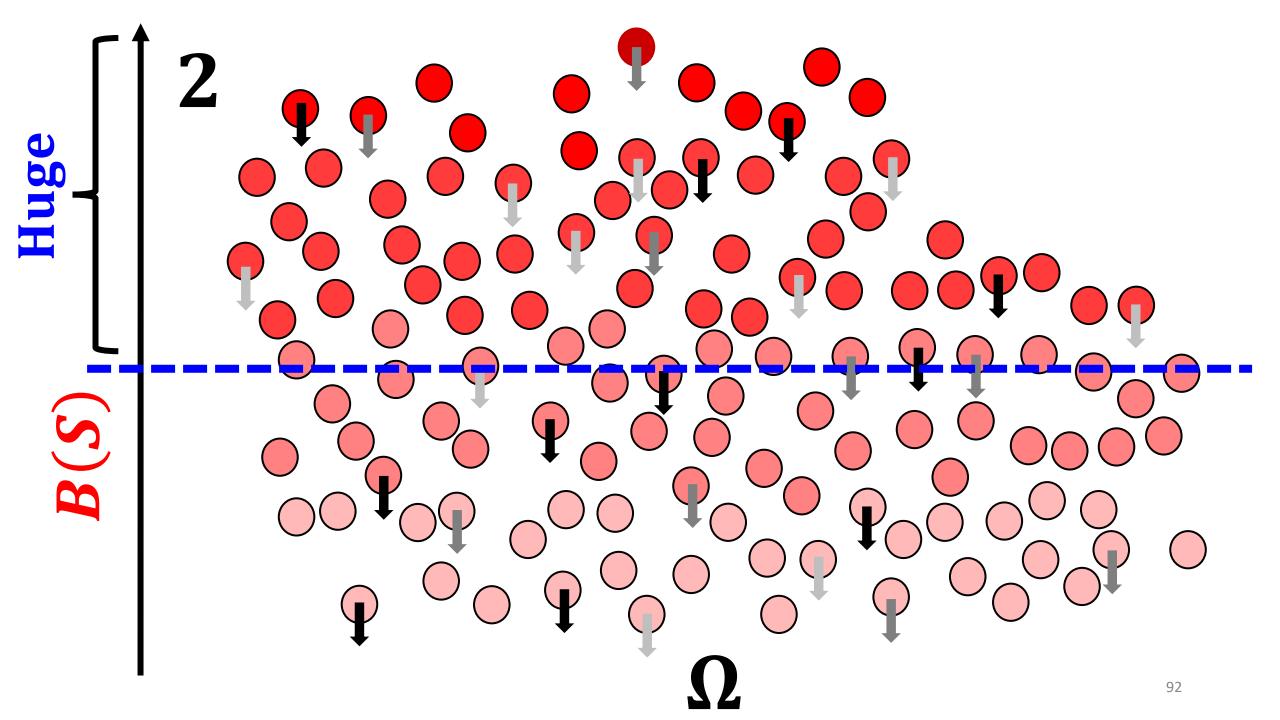
 S_x and S_y Admissible cut

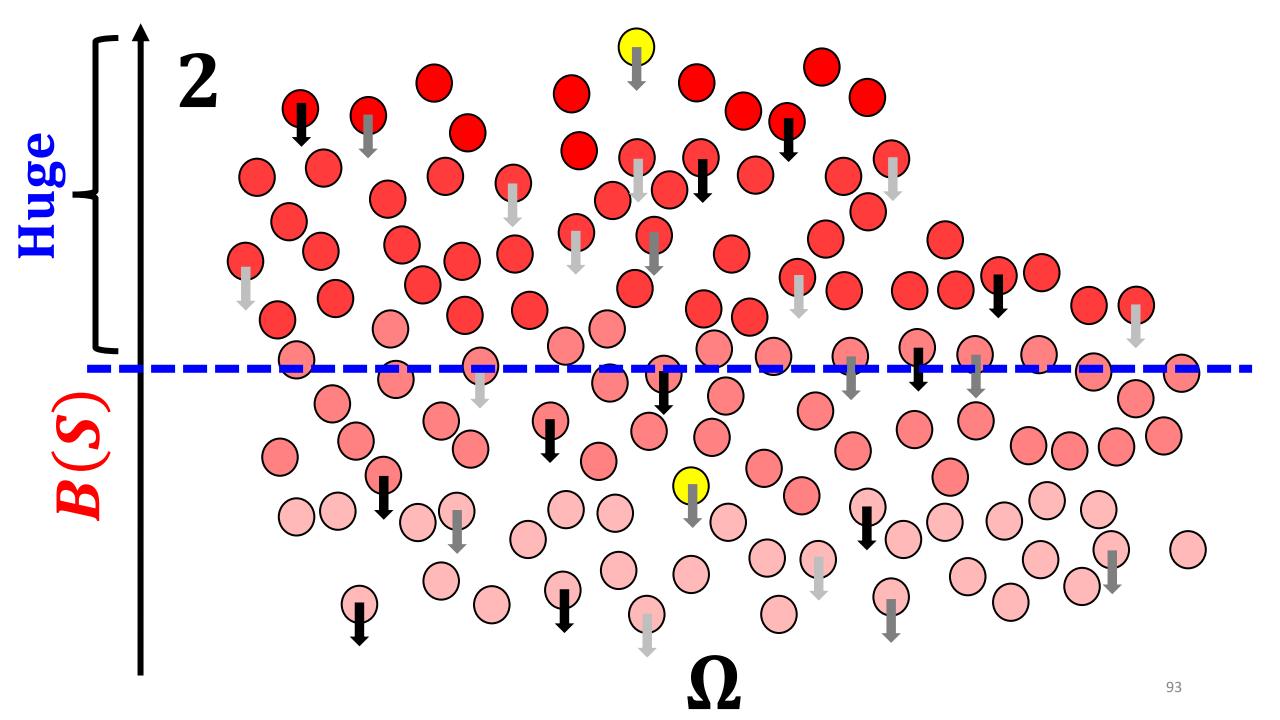


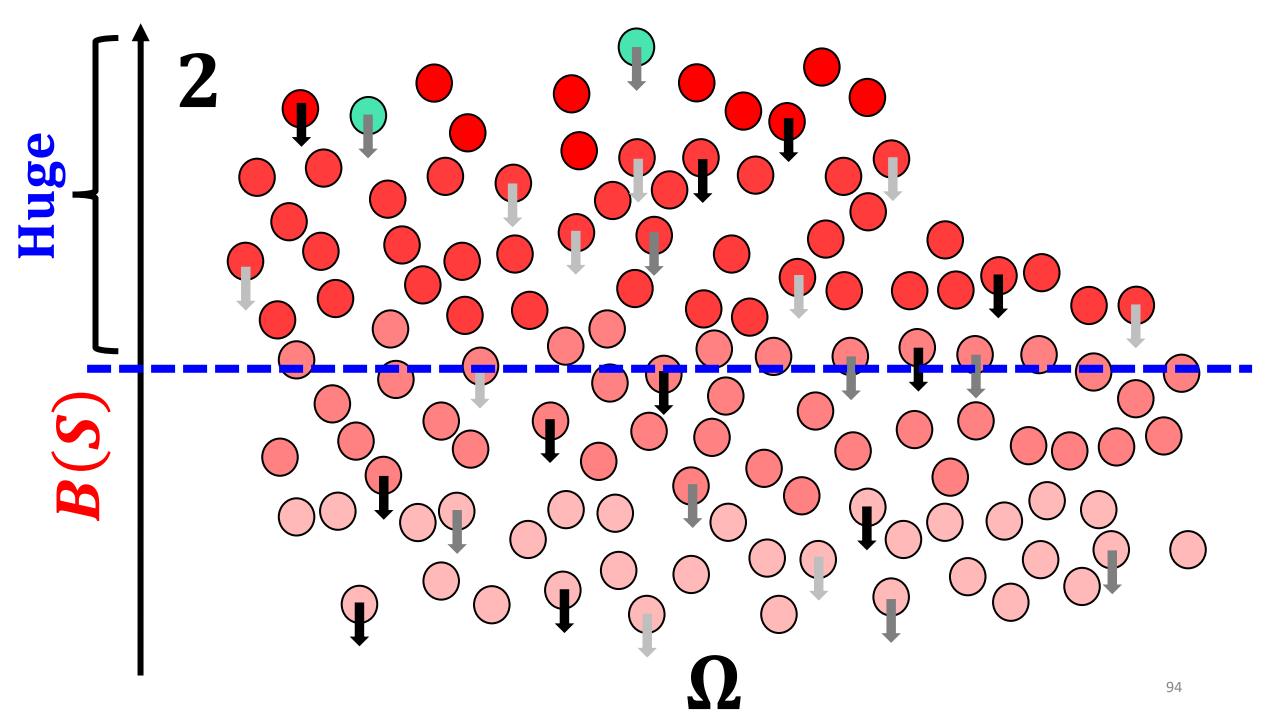
 S_y Symmetric

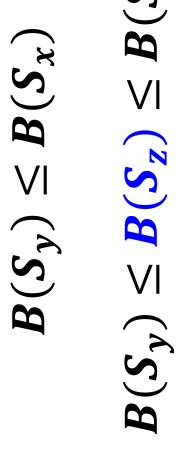
The sandwich theorem of secondary structures

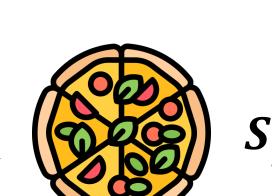
Does this solve the problem?









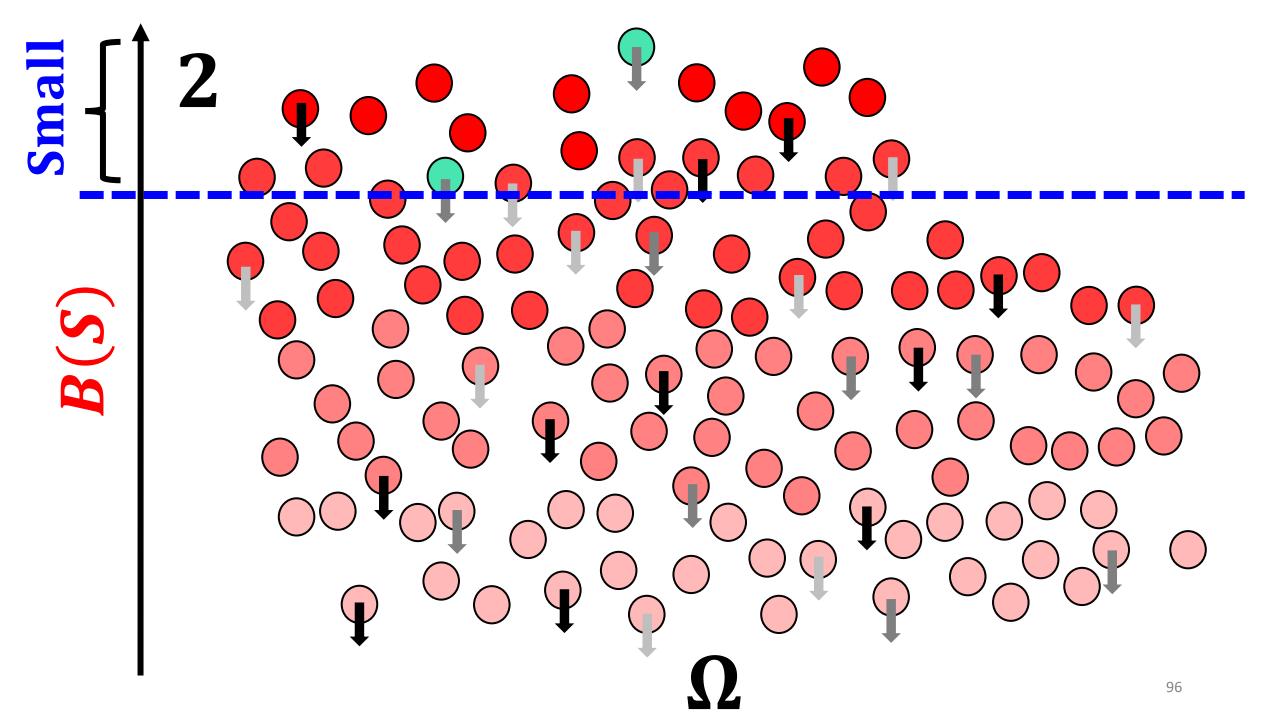


Upper bound

$$\frac{N-c}{v(\pi)}(\sigma(v(\pi))-v(\pi))$$

+

$$N^2/16$$



▶ Lemma 28. For any two 2-fold rotational symmetric secondary structures, the maximum number of all distinct central internal loops is $\sum_{s \in y} (\|A\|_s \|T\|_s + \|G\|_s \|C\|_s - \mathcal{I}_s) \le N^2/16$,

where $\pi = y^2$, and \mathcal{I}_s is an indicator function such that $\mathcal{I}_s = \begin{cases} 1 & c > 2 \text{ and } s(1) = \overline{s(|s|)}. \\ 0 & \text{otherwise} \end{cases}$

Computational complexity of Minimum Free Energy algorithms

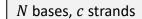
Level	Input Type	MFE
1	Single Strand (Maximum matching)	$O(N^3)$
2	Single Strand (Loop model)	$O(N^3)$
3	Multiple unique Strands, Bounded ($\leq c$)	$O(N^3(c-1)!)$
4	Multiple Strands, Bounded ($\leq c$)	?

N bases, c strands

Open problem for $\approx 20 \ \text{years}$

Computational complexity of Minimum Free Energy algorithms

Level	Input Type	MFE
1	Single Strand (Maximum matching)	$O(N^3)$
2	Single Strand (Loop model)	$O(N^3)$
3	Multiple unique Strands, Bounded ($\leq c$)	$O(N^3(c-1)!)$
4	Multiple Strands, Bounded ($\leq c$)	$O(N^4(c-1)!)$



Thanks

dna.hamilton.ie
dna.hamilton.ie/shalaby

